
J .  Fluid Mech. (1982), vol. 120, p p .  433-450 

Printed in Great Br i ta in  
433 

On flow between counter-rotating cylinders 

By C .  A. JONES 
School of Mathematics, University of Newcastle upon Tyne, U.K. 

(Received 5 March 1981 and in revised form 3 December 1981) 

Axisymmetric flows between counter-rotating cylinders of varying radius ratio are 
examined. The stability of these flows to non-axisymmetric disturbances is considered, 
and the results of these calculations are compared with experiments. 

1. Introduction 
The problem of incompressible flow between counter-rotating cylinders has not 

received quite as much attention as the case in which the outer cylinder is fixed. 
Nevertheless, there is a considerable body of experimental results available (e.g. 
Donnelly & Pultz 1960; Nissan, Nardacci & Ho 1963; Coles 1965; Snyder 1968, 
1969a, b). It was therefore decided to  use the methods developed in a previous paper 
(Jones 1981, henceforth referred to  as paper I) to  attack the counter-rotating cylinder 
problem. The main object was to see whether the areas of agreement between theory 
and experiment found for the fixed outer cylinder case in paper I extended to the case 
where ,u = Qouter/Qinner is not equal to zero. 

The basic idea is to  compute axisymmetric solutions corresponding to  Taylor-vortex 
flows, and then to consider the linear stability of these flows to non-axisymmetric 
perturbations. This approach is only applicable to those regions of the (7, p)-plane 
(7 = Rinner/Router) where steady axisymmetric Taylor-vortex solutions can be found. 
As reported by Krueger, Gross & DiPrima (1966)) when 7 is near 1 a n d p  is sufficiently 
negative the first transition from purely azimuthal flow, called Couette flow, is a non- 
axisymmetric one. This theoretical result was confirmed experimentally by Snyder 
(1968)) who observed that in these cases the subsequent flow pattern was usually one 
of spiral vortices rather than axisymmetric ones. I n  consequence our attention is 
restricted to values of p in the approximate range - 0.8 < p < 0. 

Donnelly & Fultz (1960) made an extensive experimental survey of the transition 
to Taylor vortices in the case 7 = 0.5, reasonable agreement being obtained with the 
theoretical predictions of the critical Taylor number Ta, made by Chandrasekhar 
(1958). The case 7 = 0.5 was further explored experimentally by Snyder ( 1 9 6 9 ~ )  b) ,  
who gave the Taylor number Taw for the transition to wavy vortices, and many 
details about observed axial wavelengths and the frequencies of wavy modes. Snyder 
(1968) has also determined experimentally points on the curve in the (v,,u)-plane 
dividing that plane into regions where axisymmetric vortices are found and regions 
where they are not; this question was also considered by Nissan et al. (1963). 

On the theoretical side, Krueger et al. (1966) have given a fairly comprehensive 
survey of the linear theory of the first transition in the narrow gap limit. DiPrima & 
Grannick (1971) considered finite-amplitude effects, using the amplitude-expansion 
method of Davey, DiPrima & Stuart (1968), and they discovered the subcritical 
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instability of the Taylor-vortex mode. This is pursued further here. They also in- 
vestigated the stability of the spiral mode; this is outside the scope of this paper. 
Nakaya (1975) has investigated the onset of waviness in the narrow-gap limit using 
the amplitude-expansion method. 

In this paper there are three main areas of investigation. Firstly, the behaviour in 
the neighbourhood of the transition from azimuthal flow is considered; the region of 
the (r,p)-plane given by 0.5 < 7 < 1 and - 0.8 < p < 0 is examined, thus extending 
the work of Krueger et al. away from the narrow-gap limit. Also, the question of sub- 
criticality of the Taylor vortex mode is examined. The second topic considered is the 
behaviour of the nonlinear axisymmetric Taylor vortex solutions. The most surprising 
results here concern the existence and uniqueness of the nonlinear solutions. Finally, 
the onset of waviness from the Taylor-vortex solution is discussed; here we have had 
to restrict attention to selected areas of the (r,p)-plane; a more comprehensive 
survey, although desirable, would have been too expensive computationally. The case 
rj = 0.5 has received considerable experimental attention, so this is studied here; the 
rest of the time was spent on fairly narrow gaps. 

The cylinders are assumed to have infinite length; this means, of course, that com- 
parison with experiment must necessarily mean large-aspect-ratio experiments. 
Furthermore, when wavy disturbances occur, they are assumed to  be of the same axial 
wavenumber (or small integer multiples of the wavenumber) as that of the Taylor- 
vortex flow. 

2. Formulation of the problem 
The method of approach is similar to that in the fixed outer cylinder case discussed 

in paper I. However, in this problem the azimuthal flow before the onset of Taylor 
vortices is 

where p = Q2/Ql, Q, = angular velocity of inner cylinder, SZ, = angular velocity of 
outer cylinder, R, = radius of inner cylinder, and 7 = RJR, is the radius ratio. The 
case we are interested in hasp -= 0, so there is a nodal value of r at which u$ is zero. For 
values of r greater than this critical value Rayleigh’s stability criterion is satisfied, so 
these regions do not contribute to driving the centrifugal instability. 

The Taylor number is defined as 

there is no single obvious choice for the definition of Ta,  and different authors have 
used different definitions. The Taylor number used by DiPrima & Grannick has a 
factor 4 where we have a factor 2, but is otherwise the same; the disadvantage of their 
definition is that in the casep = 0 most authors have T a  = 2Q: d4r2/( 1 - 7 2 )  v2, whereas 
their formula gives twice this value. Since we wish to  compare cases where p can 
be either zero or non-zero, we adopt (2.2) as the appropriate definition. We non- 
dimensionalize using gap width R 2 -  R, = d ,  so that r = R,+xd, z = [d ,  and the 
viscous time scale is d2 /v .  
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For the axisymmetric nonlinear problem we introduce v = u$-u$ and a Stokes 
stream function $; these are then expanded as 

N M 
v = Z v,,Tz(x) cosnac, 

n=Om=O 

the TZ(x)  being reduced Chebyshev polynomials. When these truncated expressions 
are introduced into the Navier-Stokes equations, collocation at selected points gives 
a set of nonlinear algebraic equations for the $mm and vmn. Details of the equations 
and the numerical procedure are given in paper I. 

The perturbations to the axisymmetric solutions are proportional to  

exp (d + i(wt - m$)),  

where and w are real and m is an integer. The perturbed radial and axial 
velocities ui and u: are chosen as dependent variables, except in the case of axisym- 
metric perturbations, when $' and v', the perturbed stream function and azimuthal 
velocity, are used. As in the p = 0 case disturbances can be separated into two classes: 
those that have perturbed axial velocity ZL; proportional to a sum of terms involving 
sin nag, which we call in-phase modes, since they are in-phase with the Taylor vortex 
flow; and those that have u; proportional to a sum of terms involving cosnac, the 
out-of-phase modes. Both possibilities have to be considered, but out-of-phase modes 
are usually more important. 

The parameters required to determine a nonlinear axisymmetric state are Ta, 7, p 
and a ,  the axial wavenumber (a = 2nd/h where h is the wavelength). The method of 
solution of the nonlinear equations involves Newton-Raphson iteration from an initial 
guess. In  many situations the nonlinear solutions are not unique, so that the solution 
that emerges on a particular run with a particular set of input parameters is not 
necessarily the only solution with those input parameters; a different solution may 
result if the initial guess is chosen differently. We shall discuss the question of unique- 
ness further in § 4. The stability calculation for a given nonlinear state then gives the 
eigenvalues w and g ,  t'he frequency and growth rate of the wavy modes. These eigen- 
values must be calculated for all the relevant values of m ;  they are found using the 
methods described in paper I .  

3. Small disturbances to the azimuthal flow 
Krueger et al. (1966) discovered that for p sufficiently negative, non-axisymmetric 

disturbances to the azimuthal flow can grow a t  a lower Taylor number than axisym- 
metric disturbances. The value of p below which this occurs is a function of 7, the 
radius ratio; it is therefore possible to divide the (v,p)-plane into regions where the 
critical disturbance is axisymmetric or non-axisymmetric. I n  order to decide on 
which side of the dividing curve a point in the (r/,p)-plane lies we have toperform the 
following procedure. For each m, including m = 0, we must find the axial wavenumber 
a,, which gives minimum critical Taylor number Tam. 

The critical value of m is that value which gives smallest Tam; if this is m = 0 the 
point ( 7 , ~ )  lies above the dividing curve; if it is m # 0, the point lies below. So on the 
dividing curve the smallest TCZ,~, m # 0, equals Ta,. 
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FIGURE 1. The (7, y)-planc is divided into four regions by (a )  thc curve on which disturbances 
with rn = 0 and rn = 1 havc ncutral stability at  the same Taylor number, and ( b )  the curve 
above which the axisymmetric disturbances are supercritical and below which they are sub- 
critical. 

The computer program actually calcul?tes the growth rate a as a function of Ta,  
p, 7, a and m, so a = a(Ta,p, 7, a, m). If p, 7 and m are fixed, then a(Ta, a)  = 0 defines 
the curve of critical Ta as a function of a. Minimum critical Taylor number occurs 
when dTa/da = 0; since d a  = (aa/aTa)dTa+ (aa/aa)da = 0 on the curve a = 0, 
minimum critical Taylor number occurs when aalaa = 0. So a point where Tam = Tan 
will satisfy the four nonlinear simultaneous equations 

If 7 and m are chosen, these equations can be solved for the four unknowns T a ,  p, a, 
and a, using Newton-Raphson iteration. I n  the range 0.5 < 7 < 1 it was found that 
the m = 1 mode gave the minimum critical Taylor number on the dividing curve. 
Since the azimuthal flow state is 5-independent, disturbances are proportional to 
exp(ia5), so we can truncate expansions of the form (2.3) or (2.4) at N = 1 .  Since 
M = 16 gives accurate solutions for values of p and 7 in the range under consideration, 
each evaluation of a takes only a very short time; furthermore, since the Newton- 
Raphson procedure iterates on all four unknowns simultaneously each point on the 
curve can be obtained reasonably quickly. The dividing curve is shown in figure 1 as 
curve (a) .  The values of a, and am are not very different; at 7 = 0.5, p = -0.39, 
Ta = 15.45 x lo3, a, = 4.08 and a1 = 3.81, and for narrow gaps a, and a1 become 
much closer together. This dividing curve is important for our study, since it is only 
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above this curve that axisymmetric vortices occur; our method is therefore only 
applicable to that part of parameter space lying above the dividing curve. Also plotted 
in figure 1 are the experimental points of Snyder (1968) and Nissan et al. (1963). They 
also found m = 1 to be the critical m. Agreement is reasonably good for the points 
with 7 2 0.8; the q = 0.5 point is, however, significantly out. 

DiPrima & Grannick (1971) showed that finite-amplitude Taylor vortices can exist 
a t  a lower Taylor number than critical in certain regions of the (V,,u)-plane. For 
subcritical instability it is necessary to have ,u sufficiently negative, so we again have 
a dividing curve in the (q,p)-plane. Above this curve, which is labelled ( b )  in figure 1, 
Taylor vortices are supercritical, below it they are subcritical. This curve was con- 
structed using the nonlinear Taylor-vort,ex program; a t  given ,u and q a nonlinear 
solution was found for T a  slightly above Ta,. Then Ta  was reduced while the ampli- 
tude of the solution was monitored. I n  a supercritical case the amplitude tends to zero 
as this is done, while in a subcritical case the amplitude tends to some finite value. I n  
this way we can bracket the dividing curve and hence construct it, This procedure 
would be rather inefficient if it were not for the fact that near critical T a  only the 
second-harmonic and mean-motion terms are stimulated; we can therefore use our 
nonlinear program truncated at N = 2. We should note, however, that  to  determine 
the minimum value of T a  a t  which subcritical motion occurs i t  is not sufficient to set 
N = 2. 

The two curves in figure 1 divide the (q,,u)-plane into four regions: I, 11, I11 and IV. 
in region I we have supercritical Taylor-vortex flow, that is as Ta  is increased from 
small values an axisymmetric transition is followed by the smooth development of 
Taylor vortices. I n  many cases these vortices subsequently become wavy. I n  region I1 
we have subcritical Taylor-vortex flow; an axisymmetric transition takes place, but 
it is followed by a jump to finite-amplitude vortices. Subsequent lowering of Ta leads 
t o  hysteresis, since steady vortices are possible for Ta < Ta,. I n  region I11 non- 
axisymmetric modes will develop first, so the motion immediately becomes fully 
three-dimensional. I n  region I V  the axisymmetric transition is subcritical, but non- 
axisymmetric modes have a lower Ta,  than axisymmetric modes; the expected 
behaviour cannot therefore be predicted without further calculation. 

I n  this paper we shall concentrate on region I; however, some investigation of 
subcritical Taylor vortices was made. The situation here resembles that in penetrative 
convection (Veronis 1963; Musman 1968; Moore & Weiss 1973). The x-value corre- 
sponding to  zero azimuthal velocity is given by 

.,=-[(-) 7 1 - P  -I]  
1 - 7  q2-P 

in the Couette-flow solution, and the angular momentum distribution is stable for 
values of x satisfying x, < x < 1.  It is convenient to introduce a Taylor number and 
wavenumber based on the width of the unstable region only : 

Ta' = x:Ta, a' = ax,. (3.3) 

The behaviour of subcritical Taylor vortices is then closely analogous to the be- 
haviour of two-dimensional penetrative convection as described by Moore & Weiss 
(1973). 
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As ,u is decreased from 0, Ta' starts to fall, owing to the 'softening' of the outer 
boundary condition. After some small oscillation, Ta' eventually flattens out to 591 
a t  large negative ,u for all values of 7 (Chandrasekhar 1961). I n  the narrow-gap case 
the motion becomes subcritical a t  p 2: - 0.7; Musman (1968) gives the corresponding 
parameter in penetrative convection, 1 - A ,  as 2: - 0.8. As ,u is further reduced, 
counter-cellsappear, the first counter-cell appearing in the neighbourhood ofp 2: - 0.9; 
Moore & Weiss (1973) find counter-cells appearing when 1 - h < - 0.91 in penetrative 
convection. 

I n  comparing experiment with theory the critical Taylor number and axial wave- 
number are often found; for example the experiments of Donnelly & Fultz (1960) were 
satisfactorily compared with the calculations of Chandrasekhar (1958). Since Ta,  and 
ac, the critical wavenumber a t  the onset of Taylor vortices, are fundamental to these 
calculations, in table 1 information is given which enables these quantities to be 
evaluated with the aid of a programmable calculator, for the range 0.5 < 7 < 1 and 
-0.8 < ,u < 0. We write 

m = G n = 8  

(3.5) 

where 7" = 4(7 - 0.75), ,u* = 2.5(p+ 0-4), and Ta' and a' are given by (3.3). Tm and T, 
are the mth and nth Chebyshev polynomials respectively. The values of anln and h , , ,  
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9 Y Tae a, Ta ,  011 Ta; 4 
0.6 - 0.3 5710.1 3.294 5712.8 3.291 766.3 1.992 
0.6 - 0.7 27 359 5.006 27 350 5.004 697.4 2.000 
0.9 - 0.3 2719-2 3.161 27 18-7 3.160 814-6 2-338 
0.9 - 0.7 64067 3.514 6404.4 3.51 1 583.7 1.929 

TABLE 2 

are listed in table 1. Tak and a: have a smaller range of values than the original vari- 
ables T a ,  and ac, which means that fewer coefficients are required to give a desired 
accuracy. 

Ta: and a; can easily be found from table 1 using an adapted form of Clenshaw's 
(1955) method (see e.g. Hildebrand 1956). We define c8, = c7, = 0 and then use the 
recurrence relation 

Cmn = 2V"cm+l,n-Cm+2,n +am,, (3.6) 

to  evaluate con and cln. We then define el, = e, = 0 and d, = con - ?*el,, and use 

en = 2 ~ *  en+,- en+2 i- d,, (3.7) 

to  evaluate T a l  = eo-,u*el. To evaluate a; we again set cSn = cg, = el, = e, = 0 and 
use (3.6), but this time we put the b,, coefficients in instead of the a,, coefficients. 
Then we use (3.7) as before to  obtain a: = e,-p*el. The values of a and T a  can then 
be found from (3.2) and (3.3).  

I n  table 2 we give the results obtained by using table 1 to compute selected values 
of T a ,  and a,; these values are listed as T a ,  and al in table 2 .  We also give the corre- 
sponding Ta: and a; (see (3.3)) listed as Ta;  and a;. We can compare these results 
with the 'exact' values of T a ,  and a ,  computed by full numerical integration, and 
labelled T a e  and ae in table 2. 

From this table we can see that the errors incurred by using table 1 rather than full 
numerical integration are generally about 0.1 yo. 

4. Nonlinear axisymmetric Taylor-vortex solutions 
In  regions I and I1 of figure 1 we know that the first transition from azimuthal flow 

will be axisymmetric. It is therefore natural to find nonlinear axisymmetric solutions 
in these regions and to test their stability to  axisymmetric and non-axisymmetric 
perturbations. A well-known problem lies in deciding on the appropriate choice of a, 
the axial wavenumber, in the nonlinear regime. This problem has been considered 
both experimentally (e.g. Coles 1965; Snyder 1969a; Donnelly & Schwarz 1965) and 
theoretically (e.g, DiPrima & Eagles 1977). The presence of end walls means that a 
discrete number of cells N has to  fit in the apparatus, and all experiments indicat,e that  
several different values of N are possible. In  the experiments there is therefore a set 
of discrete attainable axial wavelengths lying in a band. 

The simplest strategy is to adopt that value of a = ac which minimizes Tav,  and 
assume that a does not change as T a  is increased. This procedure gives good agreement 
with observation in the case ,u = 0 (see paper I); in this case the experimentally 
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FIGURE 2. (a) The amplitude, in terms of G', is plotted against Ta for p = - 0 . 2 ,  = 0-5 ;  
- , stable Couette-flow solution; ---, unstable Couette-flow solution; -.-.-, stable primary 
solution, wavenumber 01, = 3.27;  * . . . . , unstable alternating-cell solution, wavenumber a,; 
- x - x -, stable secondary solution, wavenumber 2a, ;  x x x x , unstable secondary solution, 
wavenumber 2a,. (b )  The amplitude, in terms of G', is plotted against T a  for p = 0, 7 = 0.8756: 
-, stable Couette-flow solution; ---, unstable Couette-flow solution; ---.-, stable primary 
solution, wavenumber a, = 3.13;  . * 3 * . , unstable alternating-cell solution, wavenumber ae; 
- x - x -, stable secondary solution, wavenumber 2a,; x x x x , unstable secondary solution 
wavenumber 2a,. 
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observed band of results usually includes a,. As we shall see, this choice of a unfortu- 
nately cannot always be extended to the case where ,u is non-zero. 

We should note that the axisymmetric solutions become unstable to non-axisym- 
metric disturbances in some regions of the (T,p)-plane; however, it is still of interest 
to study the purely axisymmetric problem, as it can be useful to view some parts of 
the wavy-vortex regime as a basic axisymmetric flow with a small non-axisymmetric 
component superimposed. 

After the first transition, the amplitude of axisymmetric vortices can be con- 
veniently measured in terms of G‘ = (G - G,)/Go, where 

is the torque on the inner cylinder, (av/ax)l,., being the average value over 6. 
G, = 2( 1 -,u) Go/v(  1 + 7)  is the torque of the azimuthal flow solution, and 

Go = 2nR: hvpQ,/d, (4.2) 

where h is the length of the cylinders and p is the fluid density. We should note that G’ 
increases as the square of the Taylor-vortex flow in the neighbourhood of Ta,. 

In  figure 2 we have plotted G‘ against T a  for the two cases (a )  7 = 0.5, ,u = - 0.2 and 
( b )  7 = 0.8756, ,u = 0. Also we have indicated which solutions are unstable to axisym- 
metric disturbances and which are stable to such disturbances. Only those solutions 
with wavenumber ac, or multiples of ac, are shown in the figures. Figure 2 has been 
constructed using a comparatively severe truncation with N = 4; the topology of the 
pictures is the same a t  higher values of N ,  but the actual values of G‘ are a few per 
cent lower. At large Taylor numbers there are several different solutions a t  the same 
value of T a ;  the solution obtained on any one run depends on the starting values of 
the iterative procedure. It is not possible to be certain in advance to which solution 
any particular starting value will lead to; an unstable solution is just as likely to be 
found as a stable one, so for example the solution @ = v = 0 ,  the Couette-flow solution, 
can be found a t  any value of T a .  Also, solutions that have $mB = 0 for odd n and 
vmn = 0 for even n can sometimes be found; from (2.2) and (2.3) we can see that these 
correspond to solutions with period 2a as well as a. Similarly, solutions with period 
na, for any integer n can be found, provided that the truncation number N and the 
Taylor number are large enough. 

Given the non-uniqueness of the solutions it is legitimate to ask whether all the 
solutions of period a have been found. It is not possible to give a definite answer to 
this; however, by examining the axisymmetrie stability of the solutions that have 
been found we can see that there are no other solutions bifurcating from those we have 
calculated, since points of bifurcation will only occur a t  points where neutrally stable 
disturbances exist. We can therefore be reasonably sure that all solutions that can be 
continuously traced back to the Couette-flow solution have been found. Since it is only 
stability or instability to axisymmetric solutions that helps us sort out the topology 
of nonlinear axisymmetric solutions, in this section we shall assume the word 
‘ axisymmetric’ qualifies the words ‘&able ’ and ‘unstable ’. Non-axisymmetric 
stability will be considered in 5 5. 

Since figure 2 is more complicated than we might have expected, some explanation 
is required, Consider figure 2 ( a )  first. The Couette-flow solution is the only one when 
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T a  c Ta ,  = 5885; the primary solution bifurcates from this solution a t  the point B, 
with wavenumber a, = 3.266. This stable solution increases in amplitude smoothly 
at first as T a  is increased. From 5885 < T a  < 11 632 this branch is the unique non- 
trivial solution with wavelength 2n/a,. At T a  = 11 632 a secondary solution with 
wavenumber 2a, bifurcates from the (unstable) Couette-flow solution a t  B,. This 
‘ double-roll ’ secondary solution with wavenumber 201, is initially unstable to dis- 
turbances of wavenumber ac. As T a  is further increased this secondary solution bifur- 
cates a t  Ta N 15000, the point labelled B, in figure 2(a ) .  Two branches emerge, one 
of which is still a double-roll solution, which now becomes stable, but the other has 
period 2n/a, but not nla,. In  this new solution, called the alternating-cell solution in 
figure 2 (a ) ,  one of the double rolls is strengthened while the other is weakened. As Ta 
is increased further, the amplitudes of the even multiples of a,  weaken, while the 
amplitudes of the odd multiples strengthens. Finally, at T a  N 18800, at the point 
labelled B,, this unstable alternating-cell solution joins onto the primary solution that 
bifurcated a t  B,. So the primary solution no longer exists when T a  > 18 800. It should 
be noted that there will be other solutions of period 2n/3aC, 2n/4aC etc. bifurcating 
from the azimuthal solution. The development of these solutions was not examined in 
this study. 

There is another point to be mentioned in connection wit>h figure 2: a t  the bifurcation 
points B,, B, and B, there are shown just three solutions meeting a t  each of these 
points. For example, at B, we have the stable Couette-flow solution, the unstable 
Couette-flow solution and the primary solution. I n  some sense, however, there are 
really two primary solutions, one with the outgoing jet centred on 5 = 0 and one with 
the return flow centred on 6 = 0. Of course, in the infinite-cylinder geometry these two 
solutions are identical, since one is just the other displaced by n/a  along the y-axis. 
However, as emphasised by Benjamin & Mullin (1980), if the translational symmetry 
in the axial direction is removed by the presence of end walls, then in general these 
two solutions are no longer identical, and so we have four solutions meeting a t  each 
bifurcation. This degeneracy also occurs a t  B, and B,. In  the case of B,, it is the 
alternating-cell solution that should be counted twice; if we consider any particular 
adjacent pair of rolls in the double-cell solution these can either strengthen or weaken 
(see figure 3c, d ) ,  so two alternating-cell solutions develop. I n  our translationally 
symmetric problem (no end effects) these two solutions are identical, and so only 
appear as one in figure 2. 

To illustrate the above discussion, and the physical nature of the various solutions 
shown in figure 2(a) ,  the streamlines and contours of equal azimuthal velocity are 
plotted in figure 3 for four points in figure 2(a).  The four points are: (a )  the primary 
solution a t  T a  = 8000; ( b )  the primary solution at T a  = 18000; (c) the alternating-cell 
solution at T a  = 18 000; (d )  the secondary ‘double-roll’ solution at T a  = 14000. In all 
eight drawings, the left-hand edge is a t  the inner cylinder and the right-hand edge is 
a t  the outer cylinder. From these pictures we can gain some insight into why the 
primary solution develops into the alternating-cell solution a t  the ‘nose’ of the curve, 
the point B,. As we pass from 3 (a )  to 3 ( b )  we can see from the streamlines that the 
outgoing jet from the inner cylinder is becoming narrower and faster, while the return 
flow becomes broader and weaker. Even in the p = 0 case, the outgoing jet attains 
higher speeds than the return flow (see paper I) but in the counter-rotating case this 
effect is further enhanced. A similar feature is the fast narrow rising plume and 
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J, ( b )  

FIGURE 3. The streamlines and contours of equal azimuthal velocity are shown for four cases 
with ,LA = -0.2, 7 = 0.5.  (a)  Primary solution, Ta = 8000, a = 3.27. ( b )  Primary solution, 
Tu = 18000, a = 3.27. (c) Alternating-cell solution, Tu = 18000, a = 3.27. (cl) Secondary 
solution, T a  = 14000, a = 6.53. 

broader descending region which occurs in two-dimensional penetrative convection 
(Moore & Weiss 1973). A consequence of this asymmetry is that the lines of equal 
azimuthal velocity, and hence of equal angular momentum, are relatively undisturbed 
in the region occupied by the return flow (see figure 3b) .  So in this region there is a 
comparatively small distortion of the angular momentum distribution from its 
Couette-flow value. But a t  Ta > 11 632 this angular momentum distribution is 

1 5  F L M  I 2 0  
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unstable to distances of wavenumber 2a,; the small distortion of the return flow can 
delay the onset of instability of the primary solution to  disturbances of wavenumber 
2a, to Ta = 18 800 but no further. So a t  the point B, the primary solution is neutrally 
stable to disturbances of wavenumber 2a,. These considerations, do not, however, 
explain why the primary solution joins onto the alternating-cell solution rather than, 
for example, bifurcating into an unstable primary solution and a stable alternating- 
cell type of solution. 

Figure 2 ( b ) ,  thep = 0 case, behaves similarly except in one vital respect: the primary 
solution (this time bifurcating a t  T a ,  = 1860) does not join up  with the solution 
bifurcating from the double-roll solution. It is of course possible that these solutions 
do join up a t  a higher value of Ta than the present numerical schemes allow; from the 
present work we can say that this does not happen for Ta < 25Ta,. Recently Booz 
(1980) has found the primary solution up to Ta 2: 100 Ta, using finite-difference 
methods. So it appears likely that for p = 0 the primary solution exists a t  least as far 
as the onset of the turbulent regime. The solution bifurcating from the double-roll 
solution a t  the point B, is of the alternating cell form. At large Ta, the weaker roll 
becomes very small, while the larger cell resembles that of the primary solution. 

What is the solution to  the dilemma posed by the disappearance of the primary 
solution in figure 2 (a) ? There appear to be two possibilities: (i) the primary solution 
has become unstable to  non-axisymmetric modes before Ta = 18800 and a wavy- 
vortex regime exists beyond Ta = 18 800 where an axisymmetric vortex cannot exist; 
or (ii) the wavenumber a ,  is no longer in the stable range and the wavelength has to  
shorten. For 7 = 0.5 and p = - 0.2 case (ii) is to  be preferred on both experimental 
and theoretical grounds. Snyder (1969a) finds that in this region of the (q,p)-plane 
the centre of the band of allowed wavelengths decreases as Ta increases, and that a ,  
does not stay in the band as Ta increases. On the theoretical side, the axisymmetric 
solution with a = a ,  was found to be stable to non-axisymmetric disturbances, further 
reducing support for the first possibility. 

It therefore appears possible that the upper bound on permissible wavelengths in 
the Snyder experiments is set not just by stability considerations, but by the non- 
existence of equilibrium solutions. The lower bound, however, must be set by stability 
considerations, because the solution with a = 2a, is outside the range of wavenumber 
observed by Snyder. 

It was not possible to plot pictures similar to  figure 2 all over the (y,p)-plane. How- 
ever, a t  7 = 0.9, p = - 0.7 a picture very similar to that of figure 2 (a )  was found, with 
the ‘nose’ occurring a t  about Ta E 24000, so this behaviour probably occurs over a 
large area of the (y,p)-plane of figure 1. The effect of increasing a somewhat above 01, 
was also investigated; fairly small increases in a led to a rapid increase of the Ta-value 
of the nose. So increasing a by the amount observed by Snyder removes the difficulty 
and allows us to find axisymmetric solutions a t  large Ta. 

5. Stability of nonlinear axisymmetric solutions 
Since it was not practical to investigate the stability of the nonlinear solutions over 

the whole of the (y,p)-plane, three aspects were singled out for particular attention. 
The first question concerns the wavy vortices observed for narrow gaps. How does 

the onset of waviness vary as p becomes negative? The solution to  this is displayed in 
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FIGURE 4. The Taylor number Ta, for the onset of axisymmetric modes against ,u is curve (a ) .  
The Taylor number Taw for the onset of waviness is curve ( b ) .  The gap ratio 7 = 0.9. 

figure 4. The lower curve is the Taylor number Ta, a t  the onset of axisymmetric 
motion. This curve is constructed by considering m = 0 disturbances about the state 
of circumferential Couette flow. The same expansion method as described in $ 2 was 
used to calculate this curve, but since the basic state is purely azimuthal, only the 
n = 1 term in the <-expansion needs to be considered. The upper curve is the Taylor 
number T a w  for the onset of out-of-phase wavy modes. This curve is calculated by 
perturbing the nonlinear Taylor-vortex flow, and so requires the full 6-expansion; 
m = 1 is the first mode to  become unstable throughout this range. The two curves 
merge near p = -0.7; a t  this point the m = 1 and m = 0 modes become unstable 
simultaneously (see figure 1). The analogous curve for the narrow-gap limit was 
obtained by Nakaya (1975)) using the amplitude-expansion method; figure 4 was 
obtained using 7 = 0.9. Our results are in good agreement with his; this is not surprising 
since T a w  is just above Ta, throughout the range - 0.7 < p < 0, so we would expect 
the amplitude-expansion method to give good results. Stability to in-phase modes 
was also tested a t  various points in the range; non-axisymmetric in-phase modes were 
always found to be more stable than axisymmetric in-phase modes. 

The second area of investigation was comparison with Snyder’s (1969a, b )  results 
with 7 = 0.5. It was found in paper I that at p = 0 Taylor vortex flow is stable up to a t  
least T a  < 30 000 when 7 = 0.5; it is also observed experimentally that the usual wavy 
mode does not occur here (Snyder 1969a, b ;  K. J. Park 1980 private communication). 
The unstable wavy mode was found when p becomes negative, however, in accord with 
Snyder’s observations. 

As explained in $4, it is no longer adequate to leave a fixed a t  a,; we must consider 
a range of a with a > a,. This is, of course, more expensive computationally, so the 
point 7 = 0.5, ,LL = - 0.2 was fixed on; it lies comfortably in the middle of the range 
considered by Snyder. We find here that m = 2 is the strongly preferred mode, as did 
Snyder in his experiments; indeed, it was this strong preference that motivated Snyder 

15-2 
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FIGURE 5. Taw for the wavy modes m = 1, 2 and 3 is plotted against a, the axial wavenumber, 
for p = -0 .2  and 7 = 0.5. Curve (a )  is the onset of Taylor vortices Ta, for the same case. 

a 

to examine this region of the (v,p)-plane. I n  figure 5 we have plotted the values of 
Taw, the Taylor number a t  the onset of waviness, against a for m = 1, 2 and 3. The 
m = 2 mode becomes unstable a t  a Taylor number several thousands below that of 
either m = 1 or m = 3. This is rather unusual behaviour; the wavy narrow-gap modes 
usually have m = 1 unstable first, but quickly followed by m = 2 and then larger 
m-values. Each point on the curves needs a new nonlinear axisymmetric state to  be 
calculated, as this varies with a. The curve ends at a 2: 3.7 because no singly periodic 
steady-state solution could be found for smaller a (see $4) .  Also shown in figure 5 is 
the curve of Ta,, the critical Taylor number for the onset of Taylor vortices, against a. 
The minimum value of Ta, is off the picture, which is why Ta, increases monotonically 
with a in figure 5. 

Snyder found that for his apparatus the onset of the m = 2 wavy mode was 
Q1d2,/v = 146, which for p = - 0-2 and 7 = 0.5 implies Taw = 25 600. This experi- 
mental value was the smallest value obtained over many observations with different 
numbers of vortices in the apparatus (Snyder 19696). The fairest comparison is 
therefore to take the minimum theoretical value as a varies; from figure 4 this gives 
Taw = 24 000. The comparatively small difference is probably due to the experiments 
having endwalls, while the theory is for infinite cylinders. Snyder also gives the 
frequency of the wavy mode for a wide range of Ta and p. Agreement here between 
theory and experiment seems reasonably satisfactory for cases near the stability 
boundary; for example, a t  Ta = 30720, a = 3.85, d 2 / v  was computed to be 11.8, 
while Snyder’s experiment gives just over 13 (see Snyder 1969b, figure 7). 

As T a  is increased, however, the observed frequencies are systematically larger than 
the computed linear frequencies. This is perhaps not surprising, as the computations 
are ignoring nonlinear effects due to  the waves themselves; these clearly can, and 
apparently do, affect the wave frequencies. It is worth noting, however, that  thc linear 
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FIGURE 6. A quarter-period of the waveform wa = 2 in the (2, g)-plane; T a  = 32400, a = 3.85; 
,U = -0.2, 7 = 0.5. 

theory gave good agreement with observed frequencies a t  Ta well above Taw in the 
fixed-outer-cylinder case. 

Snyder also gives details of the waveform in the (r,z)-plane (1969b). To facilitate 
comparison with Snyder's description of the waveform, figure 6 has been constructed. 
The radial and axial velocities u, and uz were found for the nonlinear axisymmetric 
solution corresponding to  Ta = 32 400 and CL = 3.85 on a mesh in the (x, <)-plane. The 
unstable m = 2 disturbance was computed and the u, and u, components found for 
the (x, [)-planes q5 = 0, +n., in. and 4n.. A certain percentage of the disturbance field is 
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FIGURE 7. (a)  The growth rate is shown as a function of m, the azimuthal wavenumber for the 
case ,u = -0 .6 ,  7 = 0.8756, a, = 3.37. Curves for Ta = 1.21 Ta, (A), Ta = 1.44 Ta, (R), and 
2.25 Ta, (C) are shown. ( b )  The phase speed w/mQ, as a function of m, the azimuthal wave- 
number for the case ,u = -0 .6 ,  7 = 0.8756 and a, = 3.37. The Taylor numbers of the three 
curves are the same as in figure 7 (a ) .  

then added to the axisymmetric field; the four resulting fields are displayed in figure 6, 
in which the arrows have x- and c-components proportional to u, and us, so that the 
length of arrows is proportional to (uf + u,”)*. The percentage of disturbance that is 
added is to some extent arbitrary; in constructing figure 6 the maximum radial dis- 
turbance speed u: a t  # = 0 is 13 yo of the maximum radial speed of the axisymmetric 
jet. The four pictures (a ) ,  ( 6 ) )  (c) and ( d )  represent 4 of the cycle of the wave. The rest 
of the first half of the cycle consists of reversing the sequence, so we have (d), (c), (b )  
and finally (a).  In  the remaining half of the cycle the outgoing jet swings upward, and 
the sequence is a mirror image of the first part of the cycle. The downturn of the jet a t  
the beginning of the cycle, the strengthening of the lower cell and the diminishing of 
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the upper cell, and the fact that the outgoing jet a t  the inner cylinder moves very little 
in space throughout the cycle are the main features noted by Snyder, and all can be 
seen in the sequence shown in figure 6. 

The third area of investigation was at 7 = 0.8756 a n d p  = - 0.6. The purpose of this 
was to examine frequencies and growth rates as functions of the wavenumber m, and 
to compare them with the results previously obtained at p = 0. The growth rate as a 
function ofm is shown in figure 7 (a) for a variety of Taylor numbers. The growth rates 
behave similarly to those in the p = 0 case; there is a gradual move of the fastest 
growing m-mode to higher wavenumbers as Ta increases. Because of the uncertainty 
about the value of a, we have not gone beyond Re = 1.5 Recrit. In  figure 7 ( 6 )  we show 
the frequencies; these are substantially different from the p = 0 case, particularly a t  
the higher values of Ta. In  the p = 0 case, w/mQl, the phase speed, is approximately 
independent of m a t  all values of Ta. The value of that constant falls somewhat as T a  
is increased; in the 7 = 0.8756 case it falls from about 4 to about +. In  the p = - 0.6 
case w/mQ, is only constant at Ta just above Taw. In  the case Ta = 2.25 Ta,, w/mO1 
is no longer constant; waves with small m move considerably faster than waves with 
higher m. We should bear in mind that the frequencies obtained in figure 7 ( b )  are based 
on linearizing the wavy components of the motion; nevertheless, comparison with 
experiment would be of interest. 

6.  Conclusion 
Overall there does seem to be good agreement between experiment and theory for 

the counter-rotating case. Particularly satisfactory is the agreement between experi- 
ment and theory over the strong preference for m = 2 in the transition to wavy-vortex 
flow at 7 = &. The calculated values of Taw and the frequencies in this case also seem 
to be compatible with observation. The predictions for the onset of waviness in the 
narrow gap case seem in reasonable agreement with what is known experimentally, 
although this region does not appear to have been covered quite so comprehensively 
as 7 = 4. The only disagreement appears to be with Snyder's observation of the 
transition between non-axisymmetrie flow and Taylor-vortex flow at 7 = 0-5. The 
value found here, p = - 0-39, seems sufficiently different from the observed p = - 0.44 
to require some explanation. We note, however, that a t  all the other values of 7 there 
is reasonable agreement, and that the correct value of m ( = 1 )  is found, so perhaps this 
discordant note should not be overemphasized. 

On the theoretical side, the main surprise is the beliaviour of the nonlinear Taylor- 
vortex solutions shown in figure 2. The non-uniqueness, although i t  occurs even in the 
p = 0 case, does not appear to be in conflict with the uniqueness results of Kirchgassner 
& Sorger (1969), as their proofs only demonstrate the existence of an unspecified range 
of Ta above T a ,  in which there is a unique axisymmet'ric solution; the bifurcation 
described here lies at T a  greater than this range. It is not entirely clear whether this 
non-uniqueness has any practical consequence. It is possible, however, that it  is 
connected with the shortening of the axial wavelength observed by Snyder a t  7 = Q. 

I am grateful to Dr D. R. Moore for the loan of a program used to plot figure 6. I 
also acknowledge the co-operation of the Newcastle University Computing service for 
the use of the IBM 3701168 on which the computations were performed. 
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